

The path of the ball on a 3×6 table looks kind of like a mountain. Is there a table bigger than 3×6 where the path of the ball looks like a mountain?
\qquad
\qquad

Is there a table smaller than 3×6 where the path of the ball looks like a mountain?
\qquad X

Can you fill in the blanks with numbers that make tables where the path of the ball looks like a mountain?

The path of the ball on a 2×8 table looks kind of like 2 mountains. Is there a table bigger than 2×8 where the path of the ball looks like 2 mountains?
\qquad X \qquad
Is there a table smaller than 2×8 where the path of the ball looks like 2 mountains?
\qquad X

Can you fill in the blanks with numbers that make tables where the path of the ball looks like 2 mountains?
$5 \times$ \qquad $6 x$ \qquad $7 x$ \qquad

$$
5 x^{2} \quad 6 x _\quad 7 x
$$

The path of the ball on a 4×6 table looks kind of like a fish. Is there a table bigger than 4×6 where the path of the ball looks like a fish?
\qquad X \qquad
Is there a table smaller than 4×6 where the path of the ball looks like a fish?
\qquad
X
Can you fill in the blanks with numbers that make tables where the path of the ball looks like a fish?

The path of the ball on a 3×4 table looks kind of like a pretzel. Is there a table bigger than 3×4 where the path of the ball looks like a pretzel?
\qquad
\qquad
Is there a table smaller than 3×4 where the path of the ball looks like a pretzel?

Can you fill in the blanks with numbers that make tables where the path of the ball looks like a pretzel?
$9 x$ \qquad $12 x$ \qquad $15 x$ \qquad

